751 research outputs found

    Forest harvesting impacts on microclimate conditions and sediment transport activities in a humid periglacial environment

    Get PDF
    Sediment transport activities in periglacial environments are controlled by microclimate conditions (i.e., air and ground temperatures, throughfall), which are highly affected by vegetation cover. Thus, there is the possibility that forest harvesting, the most dramatic change to vegetation cover in mountain areas, may severely impact sediment transport activities in periglacial areas (i.e., soil creep, dry ravel). In this study, we investigated changes in sediment transport activities following forest harvesting in steep artificial forests located in a humid periglacial area of the southern Japanese Alps. In the southern Japanese Alps, rainfall is abundant in summer and autumn, and winter air temperatures frequently rise above and fall below 0∘. Our monitoring by time lapse cameras revealed that gravitational transport processes (e.g., frost creep and dry ravel) dominate during the freeze–thaw season, while rainfall-induced processes (surface erosion and soil creep) occur during heavy rainfall seasons. Canopy removal by forest harvesting increased the winter diurnal ground surface temperature range from 2.7 to 15.9&thinsp;∘C. Forest harvesting also increased the diurnal range of net radiation and ground temperature, and decreased the duration of snow cover. Such changes in the microclimate conditions altered the type of winter soil creep from frost creep to diurnal needle-ice creep. Winter creep velocity of ground surface sediment in the harvested site (&gt;&thinsp;2&thinsp;mm&thinsp;day−1 on the days with frost heave) was significantly higher than that in the non-harvested site (generally &lt;&thinsp;1&thinsp;mm&thinsp;day−1). Meanwhile, sediment flux on the hillslopes, as observed by sediment traps, decreased in the harvested site. Branches of harvested trees left on the hillslopes captured sediment moving downslope. In addition, the growth of understories after harvesting possibly reduced surface erosion. Consequently, removal of the forest canopy by forest harvesting directly impacts the microclimate conditions (i.e., diurnal range of ground temperature and net radiation, duration of snow cover) and increases frequency and velocity of periglacial soil creep, while sediment flux on hillslopes is decreased by branches left on the hillslopes and recovery of understories. The impact of forest harvesting on sediment transport activity is seasonally variable in humid periglacial areas, because microclimate conditions relevant to both freeze–thaw processes and precipitation-induced processes control sediment transport.</p

    Cytokinin biosynthesis ISOPENTENYLTRANSFERASE genes are differentially expressed during phyllomorph development in the acaulescent Streptocarpus rexii (Gesneriaceae)

    Get PDF
    Abstract The enzyme ISOPENTENYLTRANSFERASE (IPT) is responsible for the rate limiting step of cytokinin biosynthesis, an important plant hormone with key roles in meristem maintenance and organ development. In this study, we isolated IPT genes from the acaulescent Streptocarpus rexii, a plant that shows an unorthodox development starting with post-germination anisocotyly, in which cytokinins play an integral role. Three adenosine phosphate-IPTs and two tRNA-IPTs were isolated from S. rexii. Their expression levels and patterns in different tissues were compared by means of realtime-PCR and mRNA in-situ hybridization. We found that each SrIPT had a distinctive expression pattern. Interestingly, in vegetative tissues as well as in meristems only the adenosine phosphate-IPT SrIPT5 and the tRNA-IPT SrIPT9 were found. In addition, they were differentially affected by external hormone application, suggesting their different regulation and expression during meristem formation and maintenance and lamina growth. Our results indicate that SrIPTs are involved in shaping the architecture of S. rexii, working differentially and redundantly, and show that differentially expressed IPT genes regulate plant form

    Cardiovascular magnetic resonance tagging imaging correlates with myocardial dysfunction and T2 mapping in idiopathic dilated cardiomyopathy

    Get PDF
    To evaluate the details of myocardial dysfunction in dilated cardiomyopathy (DCM) patients using tagging images and the correlation of tagging imaging with tissue characteristics. C

    Gibberellin as a suppressor of lateral dominance snd inducer of apical growth in the unifoliate Streptocarpus wendlandii (Gesneriaceae)

    Get PDF
    We report on the effects of exogenously applied hormones on the lateral and apical dominance that governs morphogenesis in the unifoliate Streptocarpus wendlandii. In this phenotype, lateral dominance is extreme as the plants only retain a macrocotyledon that develops into a leaf-like phyllomorph by means of a basal meristem and do not show apical growth. Gibberellin applications suppressed the basal meristem activity of the macrocotyledon resulting in an isocotylous seedling with two microcotyledons and caused the formation of a primary phyllomorph, which suggests that the groove meristem, a shoot apical meristem equivalent, is released from apical suppression by the basal meristem. Interestingly, uniconazol, a gibberellin biosynthesis inhibitor, also caused a reduction in basal meristem activity, but without primary phyllomorph formation, suggesting that some gibberellin is required for proper function of the basal meristem. Co-application of gibberellin and cytokinin resulted in two macrocotyledons also without phyllomorph formation, which is similar to previous results for cytokinin-only applications. Thus, cytokinin may act downstream in the regulatory pathway of the basal meristem. Our results suggest that the balance between gibberellin and cytokinin in the cotyledons appears thus as key factor in the regulation of lateral and apical dominance in Streptocarpus. Their interplay may well be the primary explanation for the great diversity in growth form exhibited in species of this genus. Our work shows that small imbalances of hormones in early stages of plant development can have major effects on the final phenotype

    The bending of cell sheets - from folding to rolling

    Get PDF
    The bending of cell sheets plays a major role in multicellular embryonic morphogenesis. Recent advances are leading to a deeper understanding of how the biophysical properties and the force-producing behaviors of cells are regulated, and how these forces are integrated across cell sheets during bending. We review work that shows that the dynamic balance of apical versus basolateral cortical tension controls specific aspects of invagination of epithelial sheets, and recent evidence that tissue expansion by growth contributes to neural retinal invagination in a stem cell-derived, self-organizing system. Of special interest is the detailed analysis of the type B inversion in Volvox reported in BMC Biology by Höhn and Hallmann, as this is a system that promises to be particularly instructive in understanding morphogenesis of any monolayered spheroid system

    A Radiobrominated Tyrosine Kinase Inhibitor for EGFR with L858R/T790M Mutations in Lung Carcinoma.

    Get PDF
    Activating double mutations L858R/T790M in the epidermal growth factor receptor(EGFR) region are often observed as the cause of resistance to tyrosine kinase inhibitors (TKIs). Third-generation EGFR-TKIs, such as osimertinib and rociletinib (CO-1686), was developed to target such resistance mutations. The detection of activating L858R/T790M mutations is necessary to select sensitive patients for therapy. Hence, we aimed to develop novel radiobromine-labeled CO-1686 as apositron emission tomography (PET) imaging probe for detecting EGFR L858R/T790M mutations. Nonradioactive brominated-CO1686 (BrCO1686) was synthesized by the condensation of N-(3-[{2-chloro-5-(trifluoromethyl)pyrimidin-4-yl}amino]-5-bromophenyl) acrylamide with the corresponding substituted 1-(4-[4-amino-3-methoxyphenyl]piperazine-1-yl)ethan-1-one. The radiobrominated [77Br]BrCO1686 was prepared through bromodestannylation of the corresponding tributylstannylated precursor with [77Br]bromide and N-chlorosuccinimide. Although we aimed to provide a novel PET imaging probe, 77Br was used as an alternative radionuclide for 76Br. We fundamentally evaluated the potency of [77Br]BrCO1686 as a molecular probe for detecting EGFR L858R/T790M using human non-small-cell lung cancer (NSCLC) cell lines: H1975 (EGFR L858R/T790M), H3255 (EGFR L858R), and H441 (wild-type EGFR). The BrCO1686 showed high cytotoxicity toward H1975 (IC50 0.18 0.06 M) comparable to that of CO-1686 (IC50 0.14 0.05 M). In cell uptake experiments, the level of accumulation of [77Br]BrCO1686 in H1975 was significantly higher than those in H3255 and H441 upon 4 h of incubation. The radioactivity of [77Br]BrCO1686 (136.3% dose/mg protein) was significantly reduced to 56.9% dose/mg protein by the pretreatment with an excess CO-1686. These results indicate that the binding site of the radiotracers should be identical to that of CO-1686. The in vivo accumulation of radioactivity of [77Br]BrCO1686 in H1975 tumor (4.51 0.17) was higher than that in H441 tumor (3.71 0.13) 1 h postinjection. Our results suggested that [77Br]BrCO1686 has specificity toward NSCLC cells with double mutations EGFR L858R/T790M compared to those in EGFR L858R and wild-type EGFR. However, the in vivo accumulation of radioactivity in the targeted tumor needs to be optimized by structural modification

    Three-dimensional Coordinate System for Hemifacial Microsomia

    Get PDF
    corecore